Name:

Section:

Proofs about Subsets

1. Let A, B be arbitrary sets. Prove that $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$

2. Let A, B, C be arbitrary sets. Prove that $A - C \subseteq A \cup B$

3. Let A, B, C be arbitrary sets. Prove that $(A \cup B) - C \subseteq A \cup (B - C)$

Name: _____

Section:

Combining Sets

1. Let A, B, C be sets. Shade the Venn Diagram for $A \cap (B \cup C)$. Based on your drawing, do you think that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?

2. Let A, B, C be sets. Shade the Venn Diagram for $\overline{A \cup B}$. Based on your drawing, do you think that $\overline{A \cup B} = \overline{A} \cap \overline{B}$?

3. Let A, B, C be sets. Shade the Venn Diagram for $(A - (B \cup C)) \cup (A \cap B \cap C)$.

Name:

Section:

4. Describe the shaded region two ways: First, describe its elements in words. Then write the set in terms of A, B, C using set operations.

5. Describe the shaded region two ways: First, describe its elements in words. Then write the set in terms of A, B, C using set operations.

6. Describe the shaded region two ways: First, describe its elements in words. Then write the set in terms of A, B, C using set operations.

Name:			
name.			

Section:

7. A survey of 80 people indicated the following 26 read Jack Kerouac, 41 read Shakespeare, 18 read Chinua Achebe, 7 read Shakespeare and Kerouac, 12 read Achebe and Kerouac, 9 read Shakespeare and Achebe, and 4 read all three authors.

Questions:

- (a) Draw and fill in a Venn diagram to illustrate the given information.
- (b) How many people in the survey read none of the three authors?
- (c) How many read either Shakespeare or Achebe?
- (d) How many read Shakespeare but not Kerouac?
- (e) How many read Achebe and Kerouac but not Shakespeare?
- 8. A survey of 75 people indicated the following 14 read Natsume Soseki, 39 read Maya Angelou, 23 read Augustine of Hippo, 5 read Soseki and Angelou, 17 read Angelou and Augustine, 8 read Soseki and Augustine, and 3 read all three authors.

Questions:

- (a) Draw and fill in a Venn diagram to illustrate the given information.
- (b) How many people in the survey read none of the three authors?
- (c) How many read either Angelou or Augustine?
- (d) How many read Soseki but not Augustine?
- (e) How many read Soseki and Augustine but not Angelou?
- 9. A survey of 100 people indicated the following 53 liked chicken, 34 liked sushi, 22 liked tofu, 27 liked chicken and sushi, 9 liked sushi and tofu, 16 liked chicken and tofu, and 5 liked all three foods.

Questions:

- (a) (a) Draw and fill in a Venn diagram to illustrate the given information.
- (b) How many people in the survey liked none of the three choices?
- (c) How many liked chicken or tofu?
- (d) How many liked sushi but not tofu?
- (e) How many liked sushi and tofu but not chicken?

Counting a	nd	Combining	Sets
------------	----	-----------	------

Math 180

Class 20

Name:			

Section:

 $10. \ \ \text{Write down a formula for } |A \cup B \cup C| \ \text{in terms of } |A|, |B|, |C|, |A \cap B|, |A \cap C|, |B \cap C|, |A \cap B \cap C|.$

Hint: draw a Venn Diagram. Start by determining how many elements will be double or triple-counted by |A| + |B| + |C|, and then adjust your formula as you go. You will need to adjust it more than once!

Name:

Section:

It is nice to have a description of the whole universe \mathcal{U} that does not double count any element. This leads us to the following definition.

Define: We say that a collection S_1, \ldots, S_n of subsets of \mathcal{U} is a *partition* of \mathcal{U} if

- (a) The sets have no elements in common. In other words, if $S_i \cap S_j = \emptyset$ for all $i \neq j$, and
- (b) The union of the sets is everything. In other words, if $\mathcal{U} = S_1 \cup S_2 \cup \cdots \cup S_n$

For example, the Venn Diagram of A, B, C cuts up the universe \mathcal{U} into a collection of 8 separate subsets that are disjoint (share no elements) and that union up to everything.

(Draw the picture and label the components of the partition!)

11. Let $A = \{a, b, c, d, e, f, g\}$.

Which of the following are partitions of A?

(a)
$$\{a, c, g\}, \{b, e\}, \{d\}$$

(b)
$$\{a, c, f, g\}, \{b, c, e\}, \{d\}$$

(c)
$$\{a, c, f, g\}, \{b, e\}, \{d\}$$

(d)
$$\{a,b\},\{c,f\},\{g\},\{d,e\}$$

(e)
$$\{a, b, c, d, e, f, g\}$$

(f)
$$\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}$$